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Responses to problems involving rates of change were compared across four 
data collections througJwut an introductory calculus course given to a group 
of first year university students, all of whom had studied calculus at school. 
The course focused on derivative as instantaneous rate of change, and 
employed a method based on examining graphs of physical situations. The 
number of students who could symbolise rates in non-complex situations 
increased dramatically, but no improvement was seen in complex items or in 
items which required algebraic modelling. The results point to the critlcal 
role of a developed concept of a variable in learning calculus, and are 
interpreted by showing the inadequacies of abstract-apart concepts as 
opposed to abstract-general ones. 

Advances in technology, qualifications of teachers and mathematical competence of 
students have brought under fire the traditional place of calculus courses. There seems to 
be some concern about the large numbers of students taking calculus and the rote, 
manipulative learning that takes place (Barnes, 1988; Grimison, 1988, Steen 1988; White 
1990). The value of skill based calculus courses has come under fire even more with the 
development of computers and calculators which perform most (if not all) of the 
manipulative procedures taught in such courses (Steen, 1988). 

Replacing the traditional introduction to calculus via limits with more informal approaches 
has been widely endorsed. One such approach suggests that initially concepts should be 
introduced intuitively so that the introduction to differentiation is based largely on 
numerical and graphical explorations assisted by an electronic calculator or computer 
(Barnes, 1988, 1992; Orton, 1983; Tall, 1986; Wilkins, 1987). 

Hiebert and J;.efevre (1.986) say con.cr;ptual knowledge is characterised by relationships 
between pieces of knowledge and, thus, often plays a part in the choice of procedure for a 
given mathematical problem. The degree of abstractness of a relationship can vary in that 
abstractness increases as knowledge becomes freed from specific contexts. A useful 
distinction arose from comparing their conception of "abstractness" with the everyday 
meaning of the word and Skemp's (1971) description of the process of abstracting~ The 
Webster Dictionary presents the following definition for "abstract": 

Abstract (ver): To consider apart from particular instances; to form a general notion 
of. 

The two key words (general and apart) lead to the identification of two ways of looking at 
how abstract mathematical objects are used and related. Using mathematical symbols may 
be an abstract operation if tlTe symbols have no·concrete reference: theyare "apart". The 
only context for the symbols is the symbols themselves. In fact, in some cases no other 
meaning for the symbols may exist. An example of "abstract-apart" is knowing how to 
manipulate algebraic symbols without having any sense of what the letters stand for. On 
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the other hand, "abstract-general" indicates that the mathematical objects involved are seen 
as generalisations of a variety of situations and so can. be used appropriately in different 
looking situations. For example, an abstract-general concept of addition would be 
something like "addition is the result of combining sets of like objects" and so embraces 
fractions, decimals, algebraic symbols, complex numbers, vectors ... Such a concept could 
also see "addition" in cues other than add or plus. On the other hand, an extreme example 
of an abstract-apart concept would be only being able to seeaddition being required when 
a plus sign (or a limited number of equivalent key words) is clearly evident. 

Relationships between pieces of knowledge may be a key factor for conceptual knowledge, 
but does not always indicate abstract-general thinking. In the abstract-apart case, 
relationships are formed between mathematical objects which have no conceptual base. 
Any relationship between the objects is "superficial" because it can only be formed on the 
basis of what the mathematical objects look like. In the abstract-general situation, 
"meaningful" relationships can be formed because the mathematical objects have meaning 
beyond the symbols themselves. A key factor to indicate the difference between superficial 
and meaningful relationships is the cues that prompt the appropriate links between pieces 
of information. Abstract-apart needs definite, visible cues because abstract-apart cannot 
generalise to different looking situations. Abstract-general, on the other hand, can link all 
sorts of situations regardless of how dissimilar looking they are . 

. Our definition of "understanding" a concept is having an abstract-general notion of it. The 
addition example suggests that abstract-general and abstract-apart are not a dichotomy 
because there are many possible levels of generality between the two extremes described. 

j Hence, there isa continuum between the two. Tall and Vinner's(1981) concept image and 
concept definition can be seen as an example of the continuum. Other applications of the 
continuum can be found in Mitchelmore (1992). . 

. The purpose of the present study. was to investigate the effects of a course of study based 
on interpreting rates of change using graphs on some first year tertiary students' 
understanding in rates of change and derivative. Experience had suggested thatmany first 
year tertiary students would have received a skill oriented course in high school and be 
proficient in routine procedures, but lack many of the. underlying concepts. In particular, a 
preliminary study (White, 1989) suggested that translating a rate of change to a derivative 
is a crucial link in solving rates of change items because abstract-general notions are 
involved. The research was not a teaching experiment; the teaching was merely providing 
an appropriate environment for observing any changes in student thinking. 

METHOD 

Sample 

The sample was forty first year full time students enrolled in Mathematics I at a smaller 
New South Wales university. A prerequisite for the course was a satisfactory result in the 
final high school exam for a mathematics course which contains a large component of 
calculus. It should be noted that none of the students had finished in the top 10% in that 
final exam; the students were in most cases "average". 
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Instrument 

After trialling a number of items with students and experts in the field of calculus, four test 
items were chosen. Items 1 and 2 required the direct translation of a rate of change into a 
derivative, with Item 1 being judged by experts as the more difficult. Items 3 and 4 
involved symbolising derivatives to maximise/minimise a situation, with Item 3 being 
judged the more difficult. 

Each of the four items were structured in four versions (a, b, c, d) so that the expected 
correct response for each version was basically the same. The difference between the 
,versions was that each required. successively less' symbolisation. Hence, (a) required 
symbolising all rates to an appropriate derivative, whereas (d) had all information 
presented in symbolic form. As mentioned earlier, being able to symbolise rates of change 
was suggested as a crucial factor for understanding derivative. The four versions allowed 
for the symbolising aspects of responses to the items to be isolated. For clarification, the 
four parts for Item 1 and the part (a)s for the other three items are: 

Item 1 

(a) In the special theory of relativity, the mass of a particle moving at velocity v is 
given by: 

m = M mo where c = speed of light and mO is the rest mass. 
1- v2 

c2 ' 

At what rate is the' mass changing when the velocity is ~ and the acceleration is 

O.01c per sec? 

(b) In the special theory of relativity, the mass of a particle moving at velocity v is 
given by: . 

mO 
m = where c = speed of light and mO is the rest mass. 

~ l-~~ 
Find ~7 when v = ~ an~ the acceleration is O.Olc per sec. 

(c) G· mO . f" d dm hid dv 0 0 
Ivenm=M' v2 In dt w env:::;:~an dt = . lc. 

1--
, c2 

(d) G" mO d dill dm dv f" d dm h' 1 dv 0 
IVen m = --J 1 _ v2 an -d-t = -dv- . -dt ' ,In dt w en v = ~ and dt = .Olc. 

c2 
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Item 2 

(a) If the edge of a contracting cube is decreasing at a rate of 2 centimetres per minute, 
at what rate is the volume contracting when the volume of the cube is 64 cubic 
centimetres? 

Item 3 
B p c 

A 

(a) The diagram shows a straight road BC running due East. A four wheel drive is in 
open country at A, 3 km due South of B. It must reachC,9 km due East of B, as 
quickly as possible. The driver can travel at 80 kph in open country and 100 kph on 
the road. Assuming the car proceeds through open country to some pointP, and then 
along the road, what is the distance of P from B so that the jouIiney to C takes the 
shortest time possible? 

Item 4 

(a) Find the area of the largest rectangle with its upper vertices on the curve y = 12 - x 
2 and lower base on the x -axis. 

Teaching Sequence 

The basis for the teaching material was Swan (1989) and followed the approach of Barnes 
(1992). Initially, rates of change were investigated using graphs of physical situations. This 
led to the secant being seen as representing an average rate of change, the tangent an 
instantaneous rate of change. Derivative was then developed from the latter. Limits were 
only considered informally. 

Procedure 

Four data collections occurred - before, during, immediately after and then six weeks after 
the teaching sequence. The forty students were arranged into four approximately parallel 
groups of ten, based on their performance in a previ()us mathematics exam. The students 
were unaware of the groupings. Four tests were constructed. Each test included four 
questions - a different part from each item. Hence, each part of each item occurred on one 
and only test and each test had one part (a), one part (b) ... These tests were administered in 
a cyclic fashion to each of the groups over the four data collections so that students did 
different items each time, but data was still available for the same pool of items in all 
collections. 
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In addition, the same sixteen students (four of about equal performance from each group) 
were interviewed each time within three days of the written data collection. These 
interviews served to clarify and expand on written responses so that the student's 

. understanding could be better identified. 

RESULTS 

The number correct at each data collection 

Collection 
Item 1 2 3 4 Total 

1 2 3 8 7 20 
2 8 13 26 22 69 
3 4 6 14 12 36 
4 10 11 16 15 52 

Total 24 33 64 56 177 

Recalling that scores are out of forty, results in collection 1 show that students in general 
could not correctly respond to any item. The improvement in the number of correct 
responses in collection 3 and 4 is substantial, but performance still only exceed 50% in 
Item 2. The large number who improved suggests the teaching was a positive factor. The 
equally large number who did not points to inhibiting factors, many of which were able to 
be identified by a detailed analysis of the responses. 

Rates of Change - Items 1 and 2. 

In collection 1 only 4/40 students observed that rate of change meant a derivative was 
required. As well, only 4/20 showed any recognition of the need to use the chain rule in 
l(c) and 2(c) where the required derivatives were cued symbolically, but the actual chain 
rule was not stated. The pattern changed in the collections 3 and 4 with virtually all 
students at least attempting to translate rates into derivatives, and 34/40 correctly stating 
the chain rule in l(c) and 2(c). However, in the last two collections, problems associated 
with students' concept of a variable arose so that, even though derivatives and chain rules 
were introduced, the number of correct solutions was still lower than might have been 
expected. 

In collections 3 and 4, 36/40 students were able to correctly symbolise derivatives in Item 
2, but not in the more complex Item 1 (7/40). In Item 1,7/8 students who successfully 
symbolised derivatives gave fully correct responses; whereas for Item 2, only 22/36 of the 
responses which correctly symbolised the derivatives were actually correct. 

Students' under developed concept of a variable manifested itself differently in the two 
items. Analysis showed that the predominant error in Item 1 was that students focused on 
the visible symbols, looking for something to fit known manipulation rules, and as a result 

immediately SUbstituted~ for v. Such an attitude was named a "manipulation focus". In 

Item 2, the main cause for not correctly finishing the item when it had been correctly set up 
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was that students saw V = x 3 and V = 64 as separate cases and either gave two answers or 
were confused and stopped. 

Maximisation - Items 3 and 4. 

There were few changes across the four data collections. The main obstacle was that 
students generally could not model the situation given in part (a) or (b) using algebra 
(14/80 and 7/80 for Items 3 and 4 respectively). The lower number for the easier Item 4 at 
first appears odd. The reason was a form of the manipulation focus - named the "x, y 

syndrome" - where 56/120 students seized on the equation y ::;: 12 - x 2·and found ~ with 

no thought for modelling the rectangle. 

In both Items 3 and 4, all responses which showed correct modelling to part (a) were fully 
correct (8/8). Admittedly the numbers were small, which of itself may be si'gnificant. 
Correct modelling in part (b) also coincided with a high success rate, but not at the 100% 
level (10/14). ' 

DISCUSSION 

What has been described as the manipulation focus is an indicator of an abstract-apart 
concept of a variable. Students exhibiting the manipulation focus show they can apply 
manipulation rules, but have no sense of deciding when such rules are appropriate. Their 
use of the rules is superficial being based solely on what the symbols look like. The 

symbols are seen apart from any meaning they might have. Immediately substituting ~ for 

v and the confusion between V == x 3 and V ::;: 64 indicates how a particular value for the 
expression is seen apart from the general expression itself. The x, y syndrome shows how 
the rule for maximising is equated with the visible symbols used when the rule is first 
learnt rather than with what they represent. As such, the rule is apart from the situations it 
generalises. 

A majority of students who identified a rate as a derivative, correctly symbolised \f(dV,dt) 

and ~; in Item 2 and correctly wrote down the chain rule, nevertheless made manipulation 

focus errors. This suggests that these three relationships are superficial operations which 
can be achieved with thinking at the abstract-apart end of the continuum. On the other 
hand, being able to correctly symbolise rates of change to the appropriate derivative in 
structurally complex items (like Item 1) was only achieved by a few students who did not 
exhibit the manipulation focus. Symbolising in structurally complex situations would 
seem to indicate meaningful relationships are being used. Such a suggestion makes sense 
because in more complex situations, there is more than one variable to choose as the 
dependent and/or the independent variable. Some sense has to be attached to the letters 
involved; superficial cues alone do not suffice. For example, relating given variables in 
Items 3 and 4 requires meaningful relationships to be formed because the items are 
reasonably structurally complex. In contrast, manipulation focus students had no difficulty 
modelling the volume of the cube by V ::;: x 3 in the less complex Item 2. 

Since few students were able to define appropriate variables in 3(a) and 4(a), and that those 
who did were always completely correct, there is a strong suggestion that defining and 
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relating variables involves forming meaningful relationships at a higher level than does 
symbolising, and relating already defined variables. Symbolising in complex situations 

. requires putting appropriate· variables to the rates which are already cued; defining 
variables in a modelling situation indicates the solver is making choices with some plan in 
mind and the plan has not been laid out in the cues. In this way, the evidence suggests that 
defining variables indicates relationships at a higher level of generalisation than the pieces 
of knowledge they connect. For example, in 3(a), information about speed and distance 
must be pulled together to form a relationship which leads to minimum time. Alone, the 
link between speed, distance and time is no more general than 'the cued information. The 
introduction of Pythagoras' Theorem is also no more general that the cue of the triangle 
leading to it: However, choosing an appropriate distance to define as the independent 

. variable so that the speed-distance-time relationship and Pythagoras' Theorem can be 
. employed suggests those relationships themselves have been transcended. The executive 
control required indicates that the solver must reflect on a number of relationships and that 
seeing how to combine them indicates a relationship at a higher level of abstractness. 

IMPLICATIONS 

In general, the results present a fairly pessimistic view of where av~rage students are 
mathematically when they leave high school. Severe doubts have been raised about their 
ability to learn calculus because of deficiencies in their concept of a variable. As it stands, 
calculus teaching in school appears to be useless, with students being unable to form even 
superficial relationships soon after. Tertiary calculus seems to develop the superficial 
relationships, but not the meaningful ones and as such is worse than useless. Clearly, you . 
cannot successfully teach a tertiary calculus course by teaching calculus only. 

There would seem to be a need for a radical change in the way we all teach mathematics. 
The plot - that mathematics consists of generalisations - seems to have been lost (or never 
found?). As long as the emphasis is on reproducing procedures in antiseptic situations 
which depend on key cues that always look the same, the number of students who really 
understand and appreciate mathematics will continue to be limited to a very elite group. In 
particular, algebra teaching needs to focus on abstract-general notions of a variable by 
investigating situations where le~ters have more than a symbolic context. 

REFERENCES 

Barnes, M. (1988). The power of calculus. Education Links, 32, pp. 25-27. 

Barnes, M. (1992). Investigating change. Melbourne: Curriculum Corporation. 

Grimison L. (1988). The introduction of calculus into the secondary mathematics 
curriculum - how, when and why? Paper. presented at the 11th Annual MERGA 
Conference, Geelong. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: 
An introductory analysis. In Hiebert, J. (Ed.) Conceptual and procedural 
knowledge: the case of mathematics. 1-23, Hillsdale, New Jersey: Erlbaum. 

580 



Mitchelmore, M.C. (1992). Abstraction and generalisation are critical to conceptual 
change. Paper presented to Working Group 1: Formation of elementary 
mathematical concepts at the primary level, at ICME 7, Quebec. 

Orton, A.(1983). Students' understanding of differentiation. Educational Studies in 
Mathematics, 14, pp. 235-250. 

Skemp, R. (1971). The psychology of learning mathematics. Harmondsworth, Middlesex: 
Penguin. 

Steen, L. (Ed.) (1988). Calculus for a new century. Washington: The Mathematical 
Association of America. 

Swan M. (1989). The language offunctions and graphs. Nottingham: The Shell Centre 
for Mathematical Education. 

Tall, D.O. (1986). Building and testing a cognitive approach to calc;ulus using interactive 
computer graphics. Unpublished PhD Thesis, The University of Warwick .. 

Tall, D.O., & Vinner, S. (1981). Concept image and concept definition in mathematics 
with particular reference to limits and continuity. Educational Studies in 
Mathematics, 12, pp. 151-169. 

White, P. (1989). Student understanding in rates of change and derivative. Paper presented 
at the 12th Annual MERGA Conference, Geelong. 

White, P. (1990). Is calculus in trouble? The Australian Senior Mathematics Journal, 4 
(2), pp. 105-110. 

Wilkins, K. (1987). Calculus: should we teach "first principles" last? Reflections, 12 (3), 
pp. 99-107. 

581 


